Numeric Simulation for the Seabed Deformation in the Process of Gas Hydrate Dissociated by Depressurization
نویسندگان
چکیده
When the gas hydrates dissociate, the mechanical properties of sediments will change, which may cause the deformation of the seabed. Such incidence will directly affect the stability of the undersea device. Under the consideration of seepage-stress coupling, this paper analyzed the deformation of seabed using finite element method. Duncan Chang’s E-B constitutive model code was written, the impact of stress on the elastic constants was considered in this model. It was implemented in ABAQUS and used to simulating the nonlinear deformation of sediments. The results show that vertical effective stress of soil around the well increase significantly when gas hydrates are exploited by depressurization. The deformation of seabed increases nonlinearly with the increasing of the decomposition radius of hydrate. The maximum settlement reaches 9 m and the maximum horizontal displacement reaches 4 m. The results provide guidance on the submarine construction in the process of gas production from hydrates.
منابع مشابه
Evolution of Hydrate Dissociation by Warm Brine Stimulation Combined Depressurization in the South China Sea
To evaluate the gas production performance of the hydrate accumulations in the South China Sea, a numerical simulation with warm brine stimulation combined depressurization has been conducted. A dual horizontal well system is considered as the well configuration in this work. In order to reduce energy input and improve energy utilization, warm brine (<30 °C) instead of hot brine (>50 °C) is inj...
متن کاملNumerical Investigation of the Production Behavior of Methane Hydrates under Depressurization Conditions Combined with Well-Wall Heating
In this study, a 2D hydrate dissociation simulator has been improved and verified to be valid in numerical simulations of the gas production behavior using depressurization combined with a well-wall heating method. A series of numerical simulations were performed and the results showed that well-wall heating had an influence enhancing the depressurization-induced gas production, but the influen...
متن کاملAssessment of Gas Production Potential from Hydrate Reservoir in Qilian Mountain Permafrost Using Five-Spot Horizontal Well System
The main purpose of this study is to investigate the production behaviors of gas hydrate at site DK-2 in the Qilian Mountain permafrost using the novel five-spot well (5S) system by means of numerical simulation. The whole system is composed of several identical units, and each single unit consists of one injection well and four production wells. All the wells are placed horizontally in the hyd...
متن کاملNumerical Simulation of Methane Production from Hydrates Induced by Different Depressurizing Approaches
Several studies have demonstrated that methane production from hydrate-bearing porous media by means of depressurization-induced dissociation can be a promising technique. In this study, a 2D axisymmetric model for simulating the gas production from hydrates by depressurization is developed to investigate the gas production behavior with different depressurizing approaches. The simulation resul...
متن کاملPrediction of methanol loss by hydrocarbon gas phase in hydrate inhibition unit by back propagation neural networks
Gas hydrate often occurs in natural gas pipelines and process equipment at high pressure and low temperature. Methanol as a hydrate inhibitor injects to the potential hydrate systems and then recovers from the gas phase and re-injects to the system. Since methanol loss imposes an extra cost on the gas processing plants, designing a process for its reduction is necessary. In this study, an accur...
متن کامل